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Summary

Mathematical modeling of bioprocesses by artificial neural
networks (ANN) is presented. Bioprocesses are considered as
complex, nonlinear and dynamic multiple input / output sys-
tems (MIMO). Proposed is a general structure of ANN model
composed of three serially connected subsystems: auto regres-
sion moving averages (ARMA), module for principal compo-
nent analysis (PCA), and subsystem with layers of static neu-
ron networks (NN) with feedforward pattern progression. The
ARMA subsystem accounts for approximation of process dy-
namics by finite differences. The PCA module has two objec-
tives: 1) rejection of measurement noise and 2) data compres-
sion by removing of collinearity between measured process
patterns, i.e. reduction of a high dimension input vector to a
few principal components. The NN provides highly adaptive
interconnectivity between input and output patterns, and ap-
proximation of their nonlinear functional dependence. Parame-
ters of neurons are adapted by use of conjugate gradient tech-
nique with the Ribiére-Polak-Powell algorithm for
minimization of variance between the ANN model and meas-
ured output test patterns of a bioprocess. Applicability of
ANN models in biotechnology is illustrated by models for pre-
diction of protein secondary and tertiary structures based on
amino acid sequences, process identification in production of
penicillin, and the study of ANN internal model control
(IMC) in industrial production of baker's yeast.

Introduction

From a systems point of view, industrial processes
based on microorganisms, in comparison with chemical
processes, have several distinct properties: complex inter-
actions, high dimension of state vectors, nonlinear dy-
namics, memory, and internal control mechanism of mi-
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SaZetak

U radu je prikazan postupak matematickog modeliranja
biotehnolodkih procesa s umjetnim neuralnim mreZama (ANN).
Biotehnoloski su procesi sloZeni, dinamicki i nelinearni sustavi
s viSe ulaznih i izlaznih veliting (MIMO). PredloZena je opéa
struktura ANN sustava sloZenog od tri serijski povezana pod-
sustava: sustav s pomicnim autoregresijskim srednjim vrijed-
nostima (ARMA), sustav za odredivanje glavnih komponenata
(PCA) i sustav sa slojevima statickih neurona (NN) s unapri-
jednim (»feedforward«) prijenosom informacija. ARMA podsu-
stav omoguéava aproksimaciju dinamike procesa s pomocu re-
lacija s konacnim razlikama. Podsustav PCA ima dvojaku zadacu:
1) wuklanjanje mjernih pogresaka i kolinearnosti izmedu mjerenih
procesnih velicina i 2) kompresiju podataka, to jest saZimanje vi-
soke dimenzije vektora nlaznih velicina na nekoliko glavnih kom-
ponenata. NN podsustav omogucava adaptivno povezivanje izmie-
du ulaznih § izlaznih velicing { aproksimaciju njihove medusobne
nelinearne fumkcionalne zavisnosti. Tijekom ucenja paranictri neu-
rona adaptirajut se primjeniom postupka konjugiranih gradijenata i
Polak-Ribiére-Powellova algoritma za minimaliziranje varijance iz-
medu izlaznih velicing sustava ANN i procesa. Primjena ANN
modela 1 biotehnologiji je ilustrirana modelima za predvidanje se-
kundarnih i tercijarnih struktura prema slijedu aminokiseling,
identifikaciji procesa tijekom fermentacije peniciling i studijom
adaptivnog upravijanja s ANN modelom 1 upravljackom sustavii
(IMC) u industrijskoj proizvodnji pekarskog kvasca.

croorganisms which are adaptive to variable process
conditions. The understanding of bioprocesses is limited
by the availability of biosensors for on-line measurement
of essential biological state variables such as concentra-
tions of rate limiting intracellular species, morphological
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characteristics, and distribution of microorganism popu-
lation. Mathematical models aimed to process control
approximate systems of high dimensionality to models
with few extracellular and intracellular variables which
encompass input / output relations and enable effective
control. Usually models for control purposes can be di-
vided into two main classes: analytical and input / out-
put models. Analytical models are derived from mass,
energy and momentum balances with inclusion of ap-
proximate rate functions of intracellular reactions. For-
mally, they are given as a set of ordinary nonlinear dif-
ferential equations with parameters estimated from
laboratory and/or industrial experiments. Input / out-
put models partially or completely disregard fundamen-
tal principles but provide reliable mapping of input pat-
terns to output. Such models are formally given as auto
moving averages (ARMA) equations, »fuzzy logic« rela-
tions, and artificial neural networks (ANN).

Artificial ( computer ) neural network models mimic
biological neural systems which are able to memorize
data and deduce rules for goal oriented behavior. The
model building element is a neuron with numerous in-
puts and a single output with a nonlinear activation
function. ANN system is composed of several layers of
neurons through which patterns are propagated, from
input to output layer. Information, i.e. data and rules,
are built into a network through neuron parameters and
neuron connectivity. Through a training process an ANN
system is exposed to numerous prepared test examples
of input and output patterns and its structure and pa-
rameters are changed until based on given criteria the
system is optimally adapted to a real process. In view of
the complexity of biological processes, modeling by
ANN is very attractive especially for control engineering
tasks in industrial production. The high potential of neu-
ral networks stems from their ability to integrate various
forms of information commonly found in industrial
practice, such as: on-line data from a computer auto-
mated measurement system, off-line data from manually
conducted laboratory experiments, off-line microscope
data, qualitative observations by production engineers,
and knowledge of control rules by human experts. For-
mally, ANN can be exploited as on-line identification
systems for the following purposes: 1) monitoring un-
measured biological parameters, 2) as single step and/or
long range predictors, 3) can be included into on-line
adaptive control algorithms, 4) may be applied for proc-
ess optimization, and finally 5) can be utilized as knowl-
edge expert systems assisting production engineers.

ANN structure and algorithms

A mathematical model of an ANN is based on a
model of information processing at a single neuron. The
most commonly used model (1) is given by the static sig-
moid activation function:

v L /1/

Neurons are collected in layers and layers are as-
sembled in a network, so that a pattern entering a neu-
ron on an input layer is spread through neurons at in-

terior or hidden layers until it reaches a corresponding
neuron at an output layer. In general terms, information
consisting of data and mapping_;-ulg_s),_ is represented by
the set of network parameters §=(W, @), i = 1,2.n dis-
tributed in n layers. ANN performance is adapted in a
sense of a postulated criterion to a set of selected and
prepared test input and output patterns of a real system.
In engineering applications it commonly applies the sta-
tistical criteria of minimal variance between a model and
a real system defined by:

N
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The gradient of the function /2/ is determined ana-
lytically by the back propagation algorithm (1). Here is pro-
posed an original method for network training based on
the conjugate gradient method with the Polak-Ribiére-
Powell algorithm (2) given by:

E,il=n}incrz(§?+ﬂ.-(?) /3/

At each iteration step /3/ one dimensional minimi-
zation is performed along the search direction:
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The method is utilized in a batch mode, i.e. with a
complete set of N training patterns, and in practice it has
been found to be very efficient for application on a
standard PC computer (3-5).

When ANN are used to model a time varying bio-
process, the input / output patterns have to account for
approximation of process dynamics. In view of patterns
obtained from on-line measurements of process vari-
ables, derivatives can be approximated by r-th order
ARMA model giving input to ANN in the following
form:

I T T e Y &
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where the right hand side of the relation /6/ contains
real process measured input and output patterns which
corresponds to an ANN input vector on the left.

Measured process data are always corrupted with
pseudo-random noise and often with bias errors. Also
process data are often linearly correlated. During the
training procedure ANN can filter out random compo-
nents, but biased errors and collinearity of patterns can
degrade ANN prediction power. Data can be prefiltered
and collinearity removed in a preprocessing stage by de-
composition of input patterns to principal components
(PCA). Matrix X of k input patterns can be decomposed
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as a sum of matrixes defined as products of the score
and loading vectors:

_}
X= 8 Py /77
i=1

The matrix of input patterns X must have each input
variable normalized over a complete set of patterns,
such that E () = D_,)GZ ()= T, The score :? is j-th eigen-
vector of the covariance matrix X - X7, while the corre-
sponding loading ﬁ-’is the eigenvector of X" - X. The ma-
trix defined by the product of score and loading
associated with the largest eigenvalue accounts for the
maximum data covariance, the next pair for the maxi-
mum of the difference, and so forth. The number of re-
quired components to account for 95 % of the covariance
is usually small compared to the total number of com-
ponents of the input vector, thus leading to significant
reduction of input variables and pattern compression (5).
Besides the importance of dimension reduction, there is
significant gain due to noise rejection by principal com-
ponent analysis (PCA). Training of ANN on principal
components is more efficient as noise is already eliminated,
and also results in increased predictive power since ANN
does not attempt to adapt to measurement and process
noise. The PCA can not eliminate bias and gross errors and
they need to be detected and rejected by a separate algo-
rithm, such as data reconciliation based on mass and en-
ergy balances applied in pseudo steady state models.

The complete structure of an ANN model is presented
in Fig.1. It is composed of three subsystems, or modules,
connected in a series. The first subsytem is an ARMA
module dedicated for discretization of model differential
equations into finite difference from time series of input
and output patterns. The second module is PCA and it
has the task of reducing the number of input variables
to few principle components and at the same time to reject
measurement noise present in patterns. The third sub-
system is a static artificial neural network (ANN) which
is able to learn interaction, or mapping, between input
and output patterns. This is the essential subsystem as
it has to deduce model functions from data available in
a training set.

X s————{=+  Processsystem —ﬂ_|> y
[ ARMA PCA AN ]
ST (3_—- - —1>7
| G T B
Dynamics Statistics ~ I/0 Mapping

. Model system

Fig. 1. Structure of the model of dynamic process composed of

subsystems for autoregression moving averages (ARMA), prin-

cipal component analysis (PCA), and artificial neural network
(ANN)

Slika 1. Prikaz strukture modela dinamitkog procesa sastavlje-

nog od podsustava s pomi¢nim autoregresijskim srednjim vri-

jednostima (ARMA), analizom glavnih komponenata (PCA), i
umjetnom neuralnom mrezom (ANN)

ANN models in biotechnology

There are numerous examples in biology and
biotechnology of computer modeling based on neural
networks. An example is the software PROBE (PROtein
prediction at BErkeley) for prediction of specific secon-
dary and tertiary protein structural features from amino
acid sequences (6). The software includes several neural
network modules for prediction of:

- percent helix, strand and coil in protein,
— presence of disulfide bonds,

- PB-turns,

- folding patterns,

— surface exposure of protein residues.

The method is tested on known structure features of
273 proteins extracted from a data base of known crystal
structures. The accuracy of the method is about 95 % for
secondary and about 80 % for tertiary structural features.
The NN models give improved accuracy by a factor 2 com-
pared to models based on multiple regression technique.

Application of NN models in bioreactor monitoring
has been tested in laboratory and industrial experiments
for fed-batch and continuous operations. Results of com-
parative computer simulation studies of on-line prediction
by NN models versus extended Kalman filter (EKF)
method gave several important advantageous properties
(7). The accuracy of prediction of unmeasured biological
properties by NN was better than for Kalman technique,
the method is stable while EKF has a finite range of stabil-
ity, and NN modules present negligible computer load
while integration of filter equations in EKF can consume
much computer time. The results have been proved in a
number of cases in practice, such as in experiments with
monitoring laboratory fermentations of Bacillus thuringicn-
sis (8) and Penicillium chrysogenum (9) in industrial pro-
duction.

In the laboratory experiments the input patterns were:
type of inoculum, temperature, pH, accumulated process
time, and optical density, while the output pattern was
optical density at next sampling interval (8). A sampling
time of 1 hour was applied. Fermentations were inoculated
with spores and vegetative cells and this is an important
input pattern since it is related to duration of a process
lag phase. A feedforward NN structure with static neurons
was applied. The models with output optical density as
a continuous variable and as a class with 9 qualitative
grades were tested. The trained networks were used in a
supervisory control structure for optimization of biomass
concentration at next sampling interval. At each interval
the input patterns were scanned for optimal optical density,
and the values were used as input set points for a slave
computer. Improvement of 10 % in productivity over clas-
sical PID control was obtained.

A study of neural network modeling of industrial
penicillin production indicates that prospects for in-
crease of productivity are significant (9). Applied net-
work topology consisted of four inputs, two hidden lay-
ers with six nodes at each, and a single output. The
input patterns were two feed rates of nutrients, carbon
evolution rate (CER), and accumulated process time. The
output was biomass concentration. For optimization of
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Fig. 2a. Comparison of the measured partial pressure of ethanol
p(C;HsOH) and the response by the neural network model {ANN)
obtained in the network training procedure

Slika. 2a. Usporedba mijerenog parcijalnog tlaka etanola
p(C;H50H) i odziva modela s neuralnom mreZom (ANN) dobi-
venog tijekom postupka udenja mreZe
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Fig. 2b. Comparison of the measured partial pressure of ethanol
p(C,Hs;OH) and the response by the neural network model (ANN)
obtained in an untrained experiment

Slika. 2b. Usporedba mjerenog parcijalnog tlaka etanola
p(C;H50H) i odziva modela s neuralnom mrezom (ANN) dobi-
venog u pokusu bez ucenja

TpH
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Fig. 3a. Comparison of the measured pH and the response by the
neural network model (ANN) obtained in the network training
procedure

Slika. 3a. Usporedba mjerenog pH i odziva modela s neuralnom
mrezom (ANN) dobivenog tijekom postupka udenja mreZe

penicillin production a series of two neural networks
was considered. They are separately trained, the first for
biomass and the second for penicillin concentration.
Output from the first network is fed to the second. The
model was tested on numerous industrial data logs and
it was proven that the model can capture a nonlinearity
of the process at the biomass growth phase, and also
during the product synthesis phase. The developed
model can be incorporated in a supervisory software
and/or control for process optimization.

Control of bioreactor by ANN

Modeling by neural networks for control of indus-
trial bioreactors has an outstanding perspective. It may
open up the main bottle necks in control which are due
to lack of specific and reliable biosensors and also due
to only partly understood dynamics intracellular mecha-
nisms of the microorganism. From a control perspective
the main advantages of neural networks are their ability
to integrate various forms of information such as on-line
measurements and off-line laboratory data, their predic-
tive power for identification of unmeasured state vari-
ables and parameters, and the ability to deduce rules
from training data. By incorporation of NN modules in
a control structure it becomes adaptive and nonlinear,
and can be realized as: 1) identification and/or predic-
tion of biological variables with information fed to clas-
sical controller, or 2) replacement of classical controller
by inverse trained models (10-12).

The potential of NN models for process control is
demonstrated by the study of industrial baker's yeast
fermentation. The process is automated and on-line
measurements are available for: feed rates of nutrients,
dissolved oxygen concentration, pH, ethanol partial
pressure, rotation frequencies of electric motors for broth
reflux, broth level, and temperature. Each on-line vari-
able is sampled with a frequency of one reading per
minute, while biomass concentration is determined off-
line at intervals of one hour. Input patterns are also in-
formation on type of molasses and mass of inoculum.
The process is controlled with classical PID loops for
partial pressure of ethanol, pH, and temperature. Neural
networks were trained on process data with active PID
control. The objective of the study is to replace classical
PID with adaptive contrcl based on neural network
models and to optimize process productivity. The NN
system is composed of two independent modules dedi-
cated for control of ethanol partial pressure and pH. The
modules are trained for prediction of the state variables,
and also as inverse models for prediction of the process
manipulated variables. Each NN module has a topology
given in Fig. 1. In each module only one hidden layer is
utilized with up to seven internal nodes. The first order
ARMA subsystem was applied. In Fig. 2. are shown the
responses of the NN module trained for one step pre-
diction of ethanol partial pressure. The responses in the
figures are shifted by a constant amount in order to
avoid curve overlaping and show fine qualitative agree-
ments in details between measured and model informa-
tion. For reasons of confideality values on ordinate
scales are always given as relative quantities. The results
in Fig. 2a. are obtained with the training set of patterns.
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Fig. 3b. Comparison of the measured pH and the response by
the neural network model (ANN) obtained in an untrained ex-
periment
Slika. 3b. Usporedba mjerenog pH i odziva modela s neuralnom
mreZom (ANN) dobivenog u pokusu bez udenja

The oscillatory fermentation profile was obtained with
unmatched parameters of the PID control loop, and it
was selected for training as it provides more information
(i.e. process variable variations ) than is contained in a
relatively stable fermentation. A response obtained in a
pseudorandom sequence of input impulse perturbations
would represent an ideal training set, but it is difficult
to realize in an industrial process. In Fig. 2b. is given the
response of the NN module trained at oscillatory condi-
tions but with input patterns measured in a stable fer-
mentation. In Fig. 3a. and 3b. are shown responses ob-
tained with the NN module for prediction of pH.
Besides the NN modules for one step prediction of etha-
nol pressure and pH, inverse modules were developed
with the aim of including them directly in control loops.
In these cases the output patterns are the corresponding
manipulative variables in the individual control loops.
Feed rate of molasses g,(molasses) is the output for the
module dedicated to control partial pressure of ethanol,
and feed rate of ammonia g,(NH;) is the output of NN for
pH control. In Fig. 4. are shown the results obtained with
the trained (Fig. 4a.) and untrained (Fig 4b.) set of data.
The results are evaluated by simple statistical analysis.
The average relative error between the NN models and the
measured data is less than 1 % for training experiments,
and is lower than 3 % for the untrained experiments.
The achieved accuracy in modeling is within the range
of instrumentation error commonly found in industry.

Fig. 5 proposes a scheme for the internal model con-
trol (IMC) structure. The control is based on three inde-
pendent feedback loops, a mass balance module, and a
data base of optimal fermentations. In the control loops
for ethanol pressure and pH classical controllers are re-
placed with the inverse NN modules while temperature
is controlled with a PID. Outputs from the controllers
are processed in the mass balance model for calculation
of required feed rates for balanced yeast growth. The
course of a fermentation follows a »model reference« tra-
jectory in state space provided from a data base of op-
timal fermentations. Optimal fermentations can be deter-
mined analytically from mathematical optimization, or
can be selected according to a preselected assumed cri-

T qv(molasses) Trained response
1 200 L/h
T Process
H data
ANN model
1 1 I
0 ! ' 151
Time /h

Fig. 4a. Comparison of the measured molasses flow rate g, and
the response by the neural network (ANN) inverse model ob-
tained during training procedure

Slika 4a. Usporedba mjerenog protoka molase g, i odziva inver-
znog modela neuralne mreZe (ANN) dobivenog tijekom postupka
udenja mreZe

T 9y (molasses) Untrained response

200 L/h

Process data

ANN model

0 15
Time /

Fig. 4b. Comparison of the measured molasses flow rate g, and
the response by the neural network (ANN) inverse model ob-
tained in an untrained experiment

Slika 4b. Usporedba mjerenog protoka molase g, i odziva inver-
znog modela neuralne mreZe (ANN) dobivenog u pokusu
bez udenja

Qv {1
ANN modef !
Mass

Balances

fermentation
profiles

Fig. 5. Control structure with internal models (IMC) based on
inverse neural modules for partial pressure of ethanol and pH,
and PID controller for temperature

Slika 5. Upravljatka struktura s ukljufenim inverznim modeli-
ma (IMC} neuralnih mreZa za parcijalni tlak etanola i pH, te PID
regulatorom za temperaturu
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terion from past data logs. The data base of optimal tra-
jectories can account for different types of molasses,
mass of inoculum, and other process data such as con-
ditions of previous fermentations.

Conclusions

Applications based on neural networks in bioproc-
ess engineering must account for nonlinear process dy-
namics. An ANN structure with ARMA approximations
of input patterns is proposed to enable modeling of dy-
namic effects by layers of static neurons. Input patterns
can be effectively preprocessed by principal component
analysis (PCA) by which is accomplished a significant
reduction of number of the inputs, pattern compression,
and measurement noise reduction.

NN models can be effectively trained for prediction,
such as structural features of proteins related to their
biological activity from amino acid sequences, or in en-
gineering tasks for prediction of the course of a fermen-
tation and of on-line unmeasured biological variables.

In control of industrial bioprocesses NN models
have outstanding prospects. They can circumvent major
obstacles caused by lack of biosensors and uncertain
analytical models. Control based on neural networks can
be realized as a cascade structure with NN modules pro-
viding input information to slave PID controllers, or NN
modules can be trained as inverse modules and directly
incorporated in control loops.

In the study of modeling of industrial bioreactor for
yeast production direct and inverse NN models are de-
rived for ethanol pressure and pH with accuracy of av-
erage relative error of 1 % on trained data and 3 % with
untrained experiments.
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List of symbols

Popis oznaka

T direction vector
vektor smjera

E expected value

matematic¢ko oéekivanje
total number of layers
ukupan broj slojeva

N total number of patterns
ukupan broj uzoraka
partial pressure
parcijalni tlak

loading vector

vektor teZine

=

volumetric flow rate

% volumni protok
F order of ARMA approximation
stupanj ARMA aproksimacije
e score vektor
vektor pogodaka
P training patterns
uzorci za _uﬁeng‘e
P vector of input patterns
vekor ulaznih uzoraka
matrix of input patterns
X : ;
matrica ulaznih uzoraka
matrix of output patterns
Y ) ;
matrica izlaznih uzoraka
output pattern from a single neuron
y izlazni uzorak iz pojedinog neurona
w vector of input gain coefficients
vektor ulaznih koeficijenata pojacanja
59 vector of all network parameters
vektor cjelokupnih parametara mreZe
A optimization parameter
parametar optimiranja
gain factor
¥ faktor poja¢anja
criteria function ( variance )
funkcija kriterija ( varijanca )
5 vector of sensitivity threshold
0] parameter
vektor parametara praga osjetljivosti
Subscripts
Donji indeks
; index of a neuron
J indeks neurona
K index of patterns
indeks uzoraka
iteration index
[ . ; =
indeks iteracija
model
M
model
Superscript
Gornji indeks
output layer

¢ izlazni sloj

layer index

indeks sloja

T transposition operation
operacija transpozicije
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